Session 2: Joint Issues for Higgs, Electroweak, and Top

Overview

- What is covered in other sessions
- Higgs Electroweak
- Top → Higgs

Rick Van Kooten for the Higgs, EW, & Top groups Indiana University

Snowmass Energy Frontier Workshop 3 – 6 April 2013 Brookhaven Naitonal Lab

Strawman Project List

From Community Planning Meeting at Fermilab

Synergies & Overlaps with other HEF Working Groups

- Electroweak:
 - vector boson scattering and unitarity recovery (dynamics of EWSB, composite Higgs?)
 - Precision indirect Higgs measurements vs. direct Higgs
- Top:
 - $t\bar{t}$ scan (g_{Htt} to ~30%)
 - $t\bar{t}H$ at different facilities, extract g_{Htt}

Higgs as a window into new physics

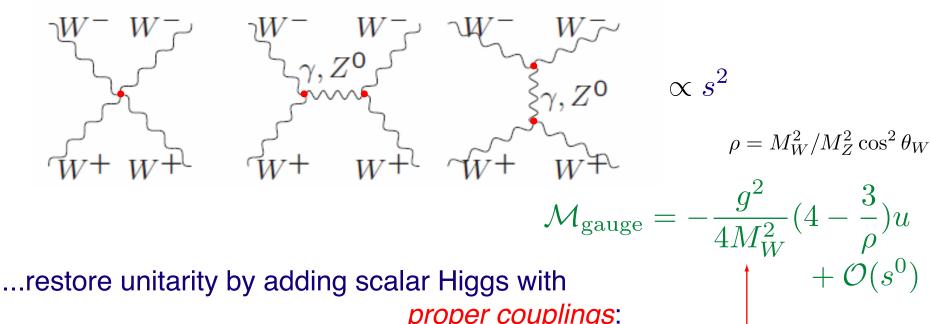
- New Particles:
 - Higgs decays into NP's, "weird/exotic" Higgs decays
 - Overlap with SUSY models and multiple Higgs
- Flavor & CP:
 - Flavor and CP-violating Higgs decays
- Simulations:
 - Common backgrounds

Synergies & Overlaps with other HEF Working Groups

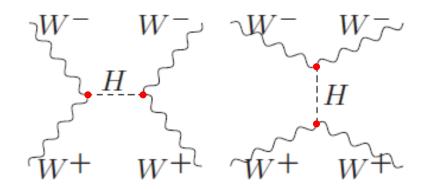
- Electroweak:)
 - vector boson scattering and unitarity recovery (dynamics of EWSB, composite Higgs?)
 - Precision indirect Higgs measurements vs. direct Higgs
- Top:
 - -tt scan (g_{Htt} to ~30%)
 - $t\bar{t}H$ at different facilities, extract g_{Htt}
- New Particles:
 - Higgs decays into NP's, "weird/exotic" Higgs decays
 - Overlap with SUSY models and multiple Higgs
- Flavor & CP:
 - Flavor and CP-violating Higgs decays
- Simulations:
 - Common backgrounds

Other sessions this meeting

Synergies & Overlaps with other HEF Working Groups


- Electroweak:
 - vector boson scattering and unitarity recovery (dynamics of EWSB, composite Higgs?)

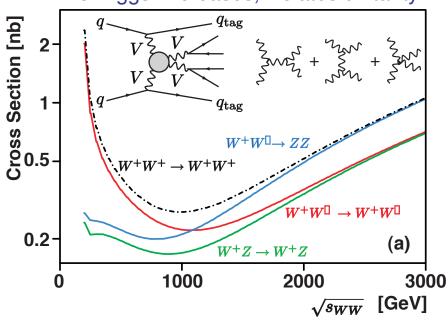
Thursday, Working Group Session 5: Vector Boson Couplings and VV Scattering (EW) (not specific for Higgs)

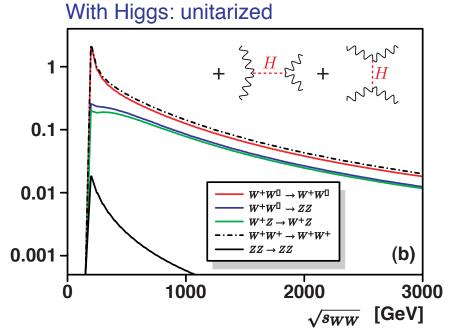

- Precision indirect Higgs measurements vs. direct Higgs
 Friday, Working Group Session 6:
 Electroweak Precision Measurements and Implications (EW, Higgs, NP)
- Top:
 - tt_scan (g_{Htt} to ~30%)
 - $t \bar{t} H$ at different facilities, extract g_{Htt}

Check high-energy behavior of the Higgs boson

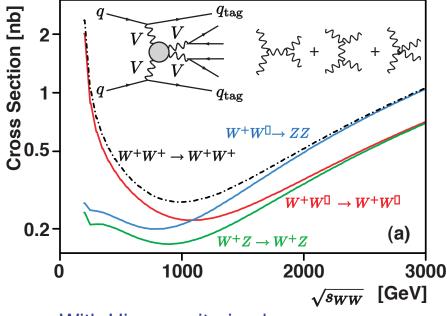
Pure gauge coupling, longitudinally polarized *W* 's:

proper couplings:

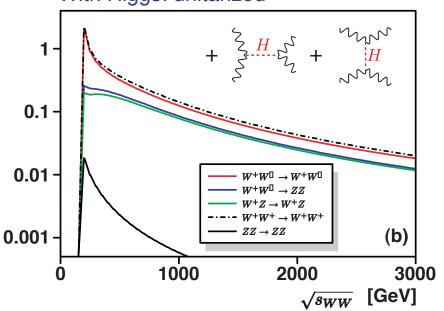



$$\mathcal{M}_H = \frac{g^2}{4M_W^2} + \mathcal{O}(s^0)$$

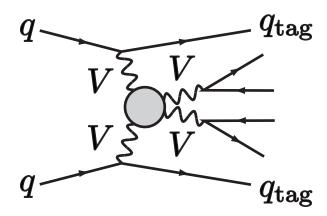
arXiv:0806.4145

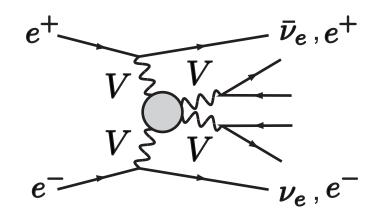

No Higgs: increases, violates unitarity

Unitarity of the *WW* scattering can be restored by (in addition to the observed 125 GeV boson) composite Higgs, multi-Higgs, other strong resonances, etc.

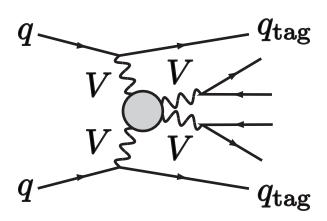


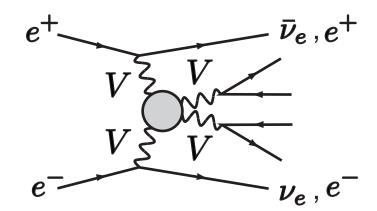
No Higgs: increases, violates unitarity


With Higgs: unitarized


Unitarity of the WW scattering can be restored by (in addition to
► the observed 125 GeV boson) composite Higgs, multi-Higgs, other strong resonances, etc.

Most previous studies did not include, since usually invoked if a Higgs was *not* observed...


 $\gtrsim 0.8 - 1 \text{ TeV}$


Forward Jets

- Higher the energy, the better
- Hadron colliders & lepton colliders
- Difficult analyses! Irreducible QCD & EW processes not taking part in the cancellation

 $\gtrsim 0.8 - 1 \text{ TeV}$

Forward Jets

- What complementary info do we learn in addition to other Higgs property studies?
- Best way to compare/complement "sensitivity" across facilities?
 - SM check of 125 GeV scalar
 - 125 GeV state is part of the new physics (multi-Higgs, etc.)
- Compare deviations from SM with the reach from other precision Higgs coupling measurements.
- What effects would only show up here?

Top quark special?

• modulo top pole mass issues, running of λ_t , using March 2013 Tevatron mass average:

$$\lambda_t = 0.995 \pm 0.005$$

$$g_{ttH} = \frac{m_t}{v}$$
 $v^2 = \frac{1}{\sqrt{2}G_F}$ $\lambda_t = y_t = \sqrt{2}g_{ttH}$

Top quark special?

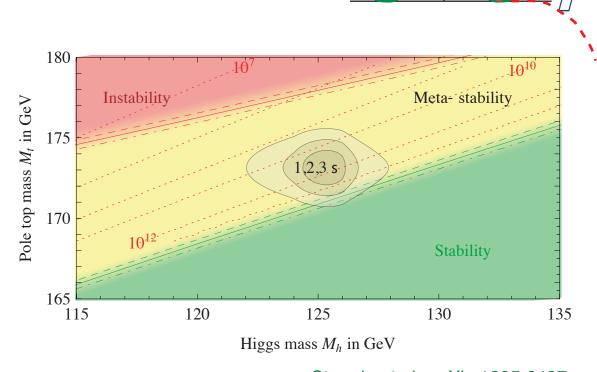
• modulo top pole mass issues, running of λ_t , using March 2013 Tevatron mass average:

$$\lambda_t = 0.995 \pm 0.005$$

$$g_{ttH} = \frac{m_t}{v} \qquad v^2 = \frac{1}{\sqrt{2}G_F}$$

$$\lambda_t = y_t = \sqrt{2}g_{ttH}$$

- Compare g_{ttH} precision across facilities (see later Higgs sessions for on couplings) Extracted from $t\bar{t}H$ production, $t\bar{t}$ threshold scan
- Including projected knowledge from LHC e.g., $t \bar{t} H$ from LHC, precision measurements of $\mathcal{B}(H \to b \bar{b})$ $\mathcal{B}(H \to W^+ W^-)$


Desch et al., arXiv:0407159

• Q: although we always to be as model independent as possible, what will be precision on g_{ttH} from loop decay measurements?

Snowmass: urged to go after the big questions:

SM vacuum stability from M_t and M_H (plus other improvements on other inputs)

(what if not SM?)

Non- perturbativity **Stability** 50 100 150 200

Higgs mass M_h in GeV

Instability

Meta-stability

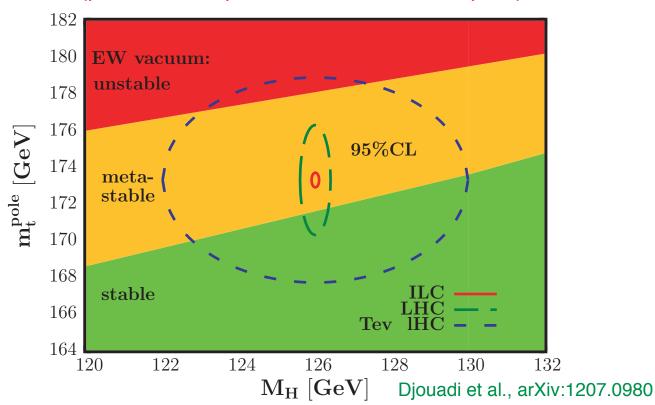
200

150

100

50

Top mass M_t in GeV


Strumia et al., arXiv:1205.6497

V(<u>/</u>)

Snowmass: urged to go after the big questions:

 \longrightarrow SM vacuum stability from M_t and M_H

(plus other improvements on other inputs)

What other topics should be considered?